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Ring gyroscopes: an application of adiabatic invariance 
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Physics Laboratory, University of Kent at Canterbury, UK 

Received 8 February 1983, in final form 21 November 1983 

Abstract. The principles of inertial rotation-sensing using ring gyroscopes are examined 
by applying the method of adiabatic invariance. The spinning-wheel gyroscope, the ring- 
laser gyro and devices containing superconducting rings are shown to be practical realisa- 
tions of a theoretically modelled gyroscope. 

1. Introduction 

Although originally applied only to that ever popular toy (and its modern refinements 
used in inertial navigation systems), the term gyroscope has now come to mean any 
device capable of sensing inertial or ‘absolute’ rotations. Such devices operate in a 
variety of ways but all rely in some way on their intrinsic angular momentum, as in, 
for example, a gimbal-mounted gyroscope whose spin axis must define a direction 
fixed in inertial space to which the attitude of a manoeuvring vehicle may be referred. 
Alternatively, by demanding that the axis of the gyroscope rotate with the vehicle (as 
in ‘strap-down’ navigation systems) a measurement of rotation rate relative to inertial 
space may be obtained from the forces produced. 

This paper will be concerned with a particularly simple form of rotation sensor 
(figure 1) consisting of a rigid, closed contour traversed by essentially free particles 
(either classical or quantum) of constant energy and momentum. We shall term such 
a device a ring gyroscopet, a familiar example of which is the laser gyro (e.g. Aronowitz 
1971) whose ring-shaped optical cavity provides a closed propagation path for the 
circulating photons. 

Since the particles within any ring gyroscope execute a periodic motion, it follows 
that the most appropriate method of analysing such a system involves the action, 
defined classically for each particle in terms of its momentum p and coordinate q as 

Figare 1. The model ring-gyroscope. 

t It is unfortunate that this otherwise suitable term should be such a tautology (the word gyroscope is itself 
derived from the Greek ‘gyros’ meaning a ring). 
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the integral over a complete cycle, I = $ p  dq. By treating this quantity as an adiabatic 
invariant when the gyro is subjected to a slow angular acceleration, we may determine 
the changes in particle motion which permit an observer on the contour to deduce its 
inertial rotation-rate. Such an approach depends, however, on a satisfactory generalisa- 
tion of the action integral to a non-inertial frame of reference, a procedure which 
requires certain results from the general theory of relativity. As we shall see, provided 
that the particles on the contour can contribute angular momentum, the action of their 
motion in the rotating frame involves not only their (linear) momentum, as in an 
inertial frame, but also a term proportional to their energy. It is this additional term 
which distinguishes ring gyroscopes from other, rotation-insensitive, devices. 

2. Rotating frames of reference and the general theory of relativity 

Since the essential feature of inertial rotation-sensing is to make measurements in a 
rotating (i.e. non-inertial) frame of reference, it is convenient, though not essential 
(Anandan 1981), to describe such processes using the general theory of relativity. 
Throughout this work, therefore, the diagonal metric gwy (p ,  v = 0, 1 ,2 ,3 )  of 'flat' or 
inertial space-time must be replaced by the distorted metric of a uniformly rotating 
frame, which includes the off-diagonal elements go, = -(a A r ) J c  (see appendix). 
Consequently, neighbouring events separated by the coordinates dx" = (dx', dx') are 
simultaneous to any observer in the rotating frame only if they occur at coordinate 
times that differ by (Landau and Lifshitz 1971) 

dxo = - go, dx'/goo (sum over i = 1,2 ,3) .  (1) 

The effect which this has on measurements made in the rotating frame can be 
determined by considering three events A, B, C, say, with respective space-time 
coordinates (xo, x ' ) ,  (xo-go, dx'/goo, x '+dx ' )  and (xo+dxo, x '+dx ' ) .  According to 
(1) therefore, events A and B are simultaneous whilst B and C are spatially coincident. 
An observer at the point ( X I  + dx') who wishes to use a measuring rod to determine the 
distance that separates events A and C must obtain this as the proper length d l  between 
simultaneous events A and B where 

- dl2 = ( ~ S A B ) ~  = (gtk - go1gok/goo) dx' dXk ( i ,  k = 1 ,2 ,3 )  (2) 

and dsAs is the interval involved. Similarly, a measurement of elapsed time by the 
same observer using a standard clock must be obtained as the proper time d r  between 
spatially coincident events B and C, where 

d r  = dsBc/c = (g~(,2/c)(dxo+go, dx'/goo) (3) 

and dssc is the interval. 
For the particular case of a frame of reference rotating with a uniform angular 

velocity R (appendix) these expressions may be greatly simplified when ar/c is small 
and only terms to first order in R need be retained. Thus, equation (2) for the proper 
distance reduces to the flat space-time result 

d l2=  -gjk dx' dXk = E  (dx')2 (i, k = 1,2 ,3)  
I 

and we may therefore retain the concept of length as the magnitude of a vector dl  
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whose components are simply the coordinate differences 

(dl), = dx' ( i  = 1,2 ,3) .  (4) 

The same does not apply, however, to time intervals, since from (3),  to the same order 
of approximation, 

and (4) has been used to substitute for dx'. 
Thus, whilst the proper distance between two events can be considered purely in 

terms of the coordinate differences dx', equation ( 5 )  shows that the proper time 
between events always differs from their coordinate time difference dxo by an amount 

where dl  is their spatial separation. The result of this is that clocks at different points 
in the rotating frame can never be uniquely synchronised: synchronisation can take 
place along an open curve but for the closed geometry of the ring gyroscope, a 
discrepancy in the coordinate time always arises when the synchronisation procedure 
is returned to its starting point (Landau and Lifshitz 1971). For a contour of area 
S = $ r A dl  (figure l),  this discrepancy takes the value (to first order in a) 

dT = dxO/c +go' dx' /c  = dxo/c- ( l / c z )  (a A r )  - dl ( 5 )  

d e  =dT-dxo/c = - ( l / c z ) ( a  A r )  df ( 6 )  

A T = -  d 0 = ( 2 / c 2 ) a  * S ( 7 )  f 
and it is from this quantity that the sensitivity of ring gyroscopes to inertial rotations 
derives. 

3. The action for the model gyroscope 

We begin by considering the model gyroscope (figure 1) at rest in an inertial (i.e. 
non-rotating) frame where the quasi-one-dimensional motion of the particles can be 
described by Hamilton's principal function S ( t ,  1)  defined for each point at a distance 
f along the contour from some origin. If the particles have energy E and momentum 
p then the action for each particle is 

I =  (aS/al)df= p d l  (8) f f 
and the period of the motion (transit time around contour) is T = dI/dE.  

Although the particles in the model gyroscope are constrained to follow a definite 
path, such a motion can always be considered in terms of free propagation between 
perfectly reflecting surfaces arranged around the contour (as in the ring laser). A 
sufficiently large number of reflectors will always produce the required propagation 
path and the particles may therefore be treated as free throughout their motion. 
Consequently we may set S (  t, I )  = pf - Et and obtain the action for each particle as 
simply 

I = p L  (9) 

T = d I / d E  = L dp/dE = L/ v (10) 

where L = $ dl  is the length of the contour. The period of the motion is now 

where U = dE/dp  is the velocity of the particle. 
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Assume now that both the contour and an observer are accelerated to some angular 
velocity fh with respect to the inertial frame. Since the observer's new frame of 
reference is non-inertial, the modified motion of the particles along the contour must 
be considered in terms of a function S ' ( x r )  of the general space-time coordinates. 
Generalising equation (8 ) ,  the action for this motion is therefore 

I' = (as'/ax') dx' = - ( i  = 1,2 ,3)  # 
where the components pi  are the spatial parts of the four-momentum p ,  = -aS'/dx,. 
Note, however, that since the gyro has experienced a genuine physical change as a 
result of its acceleration, the new function S' is not (except in very special circumstances) 
obtained merely as the appropriate coordinate transformation of the original function 
S (  t, 1).  The observer on the contour may interpret this acceleration either in classical 
terms, involving the appearance of non-inertial (i.e. centrifugal and Coriolis) forces 
orl as we choose to do here, in relativistic terms as a distortion of the space-time 
metric. From either point of view we may proceed in the same way as with any other 
change imposed on a periodic motion and provided that the acceleration is slow 
(h<c 1/T2)t then, by the usual arguments (e.g. Goldstein 1980), the action is an 
adiabatic invariant, with 

I '  = I .  (12) 

In order to evaluate the integral in ( 1  1) we write the change in the value of the 
function S' as a particle propagates between points on the contour separated by the 
coordinate interval dxp = (dx', dx') as 

and note that a nearby observer rotating with the contour will interpret this change 
in terms of the motion of a particle with (proper) momentum p' = aS'/al and (proper) 
energy E' = -aS'/ar where 

dS' = p' d l  - E' d r  (14) 
and dr, d l  are the proper time and distance involved (equations (4) and (5) ) .  Using 
(9, however, 

and by combining (13) and (14), 

(aS'/ax') dx' = p '  d l -E '  de  (16) 
where dB is the time difference of (6). 

In any measurement of momentum using standard rods and clocks, it is, of course, 
the proper momentum of the particle p' which the observer on the contour obtains, 
rather than the coordinate momentum pi = -aS'/ax'. That these two quantities are 
different follows directly from (16). Since, however, the coordinate momentum is the 
same for an observer who remains in the original inertial frame, we may write (see 

t In the ring-laser gyro, for example, T - lo-' s and SO this condition need not be physically restricting. 
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appendix) 

pi = -aS'/ax' = -aS'/a(r), = -m(  V ) i  

where, in the low-velocity limit, V is the velocity of the particle relative to the inertial 
frame and m is its mass. Consequently, setting E' = mc2 and using (4) and (6), equation 
( 16) becomes 

m V  . d l  = p' d l  + m (0 A r )  * dl. 

Hence, as expected, we can interpret the proper momentum p' of the particle in the 
rotating frame as the simple product 

p' = mu' = m /  V- .R  A rl = m d l l d r  

where U' is the proper velocity in this frame. 
Integrating (16) around the contour, the action of ( 1  1) becomes 

I =  p'dl-  E ' d 6  + +  
and now involves not only the (proper) momentum (as in (8)) but also the (proper) 
energy. This is, of course, a direct result of the space-time mixing provided in a 
rotating frame by off-diagonal elements of the metric. To first order in R, the energy 
and momentum in the rotating frame may be treated as constants and the action 
integrated to obtain 

I = p ' L + E ' A T  (18) 
where AT = -f d e  is the synchronisation discrepancy of (7).  Thus, an observer on the 
contour who, prior to the angular acceleration, measured a proper momentum p for 
the circulating particles now, when rotating at a constant angular velocity, measures 
a proper momentum p'.  The difference can be written, using (9), as 

A p = p ' - p =  - ( E ' / L )  AT (19) 
and although there will be a corresponding difference AE = E ' -  E in the proper 
energies of the particles before and after the acceleration, to first order in R this 
difference can be ignored in (19) and the momentum change written, using (7),  as 

A p =  - ( E / L )  AT=- (2E/Lc2) .R  * S. (20 )  
To make use of (20) an observer need have no knowledge of p and E (the 

momentum and energy in the inertial frame) since the form of the equation allows us 
to write A p  = i ( p '  - p") and E = : (E'  +E") where p" and E" are additional measure- 
ments obtained in the rotating frame with the sense of the gyro reversed (e.g. by 
rotating the contour through 180" about an axis normal to S) .  As we shall see, the 
ring-laser form of gyroscope is particularly convenient in this respect since, by employ- 
ing two identical but counter-rotating beams of photons, it can provide both pairs of 
measurements simultaneously. Other forms of ring gyro can be designed with two 
separate contours from which the observer can obtain equivalent measurements that 
avoid the necessity of physically reversing the device. In whatever form the gyro is 
used, however, the observer can, through application of (20), determine his inertial 
rotation rate R (or rather that component normal to the contour area) purely from 
measurements obtained in his own frame of reference. In this sense, therefore, the 
inertial rotation rate is 'absolute'. 
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4. The propagation of light: the Sagnac effect 

In terms of the interval concerned, (13) can be rewritten as (Landau and Lifshitz 1971) 

dS' = -mc ds (21) 

where ds2 = gll, dxF dx" and m is the mass of the particle. Hence for the case of light, 
where dS' = 0, the action for the motion (equation (11)) can be expressed in the 
alternative form 

I = -$ (aS'/ax') dx'. (22) 

Using (15) and noting that (to first order in a) the transit time around the contour is 
T' = $ (dx')/c, the action is simply 

I = E'T'. (23) 

Thus for adiabatic charges in the system, the energy must be inversely proportional 
to its period, a result which is familiar from the classical theory of the harmonic 
oscillator (e.g. Goldstein 1980). 

Using (10) and (18) the period of a ring gyro can also be obtained in the form 

T ' = d I / d E ' =  Ldp ' /dE '+  AT= Llv ' t -  AT (24) 

where U' = dE' /dp '  is the proper velocity of the particle. In the case of light, therefore, 
although the proper velocity must be c for all observers, a photon nevertheless takes 
a different length of time to traverse the contour in a rotating frame, the period being 
increased or decreased by AT according to the sense of propagation. This is the effect 
first observed by Sagnac in 1913 and which now bears his name (e.g. see Post 1967). 

5. Practical forms of the ring gyroscope 

A number of practical rotation sensors based on a ring geometry have been described 
in the literature: in this section we derive the particular form of (20) which must apply 
to each. 

5.1. The classical (spinning- wheel) gyroscope 

Although the familiar mechanical gyroscope involves the rotation of a rigid body, it 
may nevertheless be considered in terms of a large number of circular contours, each 
traversed by many particles of some nominal mass m. The (proper) energy and 
momentum of each particle must however be related by 

E2-p2c2 = pppw = m2c4 

so that any small change in momentum required by (20) must be accompanied by the 
energy change 
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By writing the average angular momentum of each particle as 

J =  ( r ~ p )  . d l  d l = ( 2 p / L ) S  f If 
this last result can be converted to the familiar classical expression (Landau and Lifshitz 
1960) 

hE = -n. J. (27) 

Equation (27) is independent of both the mass of the particle (and so is equally 
applicable to massless particles such as photons) and also the nature of the contour. 
Hence it may be generalised to the case of many particles and many contours, allowing 
the total energy E; of any gyroscope to be written in terms of its total angular 
momentum Jx as 

(28) 

where 8 is the angle between the vectors 0 and Jx. Thus in order to minimise its 
energy in the rotating frame, a spinning gyroscope will always attempt to align its own 
axis with the axis of rotation and will require an applied torque 

E ;  = E ~ -  n - .rx = E ~ - - ~ J ~  COS e 

I '=(d/de)El ,  =nJ,sin e=ln~J,I (29) 

to resist this tendency. (An observer in the rotating frame will interpret this behaviour 
in terms of an equal but opposite torque generated by the gyroscope itself.) 

5.2. The quantum (ring-laser) gyro 

By using the function S ' ( x w )  to define the phase of a single- or many-particle wavefunc- 
tion on the contour 

$ ' ( x w )  = $,, exp[iS'(x*)/h] (30) 

the action (equation (1 1)) is simply related to the total phase change + around the ring, 

I = ( a s ' / a x i )  dx' = t i + .  (31) f 
Since this phase must be an integral multiple N say of 27r, 

I = f i+ = 27rM = Nh (32) 
and the action is quantised in the familiar way. The adiabatic invariance of I follows 
directly from this equation since only rapid changes imposed on the system will produce 
quantum jumps in the value of N. 

Apart from the quantisation condition of (32), the treatment of the quantum 
ring-gyro closely follows the analysis in 0 3. It is, however, more appropriate to work 
in terms of the (proper) wavenumber k' = h-'aS' /al  and (proper) frequency w'  = 
-h-'dS'/aT of the quantum wave rather than its momentum and energy. Thus, in 
place of (18) we have the total phase 

4 = k ' L + w ' A T  (33) 

NA ' = L + ( w  '1 k') A T, (34) 

which, when written in terms of the (proper) wavelength A '  = 27r/ k', 



1350 P W Forder 

shows that only in the non-rotating frame do N wavelengths fit exactly into the contour 
length. Following (19) and (20), the change in wavenumber measured by an observer 
when the gyro is rotating becomes 

Ak = - (w‘/L)AT - (w/L)AT = -(2w/Lc2)R * S (35) 

Aw=-(2k/L)R * S = - ( l / h ) f l *  J (36) 

whilst from (25) and (27) the corresponding change in frequency is 

where J is the angular momentum per particle in the quantum state (equation ( 2 6 ) ) .  
For a circular contour of radius R = 2S/L and order N we obtain the familiar 
quantisation result for orbital angular momentum, 

J = I/27r = h kR = M (37) 

and a frequency shift, 

Aw = - kilR = -Ni l .  

Although the description of the gyro in terms of discrete particles has now been 
discarded, the period of the motion can nevertheless be defined using (24) as 

where U’ = dw’/dk’ is the group velocity of the wave. 
Macek and Davis (1966) were the first to demonstrate this form of inertial rotation- 

sensor using a ring laser. By employing two laser modes which differed only in their 
sense of propagation around a common optical cavity, they were able to detect the 
frequency shift of (36) as the beat frequency 2Aw between the two beams. Note that 
since light is involved, the total phase change around a ring (equation (33)) can now 
be written following (23) as 

4 = w’T‘. (40) 

5.3. The inductive (superconducting) ring-gyro 

Charged particles on the contour will behave differently from uncharged particles as 
a result of their interaction through the electromagnetic field. In particular, the 
expression for the action of each particle (equation (1 1)) must be modified to include 
the electromagnetic terms qA, where 4 is the particle charge and AP(xp)  the four- 
potential at any point. Thus, assuming a small (proper) velocity U’ for the particles, 
the action (equation (17)) becomes 

I = mv’L+q I f  A’ * dl -  E’ dB (41) 

where A’ is the (proper) vector potential experienced by an observer at each point 
on the contour (defined in terms of the electromagnetic contribution to the canonical 
proper momentum dS’ /d l ) .  

The integral $A’  * d l  represents a proper flux enclosed by the contour which we 
equate with the product Loi’ of the proper current i’ (representing the collective 
motion of the charges) and the self-inductance Lo = p o A  of the contour, as determined 
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by Neumann's formula, 

A = ( ~ T ) - '  (dZ-dl')/lr-r'l.  II 
Note that the quantity A is a purely geometrical factor and may be regarded as the 
electromagnetic length of the contour, analogous to its mechanical length L = 5 dl. 

Using these quantities (41) becomes 

I = mv'L+qLoi'- E'  dB (43) I 
which, by setting i' = nqu' where n is the particle density (per unit proper length) and 
performing the time integral, can be written as 

I = q( mL/nq2 + Lo)i' + E'AT. (44) 

The first term in parentheses is the so-called kinetic inductance of the contour, 
originating from the inertia of the particles, and can be discarded whenever the number 
of particles involved is large (as in a good conductor) so that 

I = qL,i'+ E'AT. (45) 
Considering the original action integral (equation (1  l ) ) ,  however, this is equivalent to 
retaining only the electromagnetic term 

A, dx' = qtP ( i  = 1 ,2 ,3 )  (46) I = - q  I 
where (3 is also a quantity with the dimensions of flux. This flux must be distinguished 
from the product Loi' (the proper flux) in (45) in the same way that the action in (18) 
differs from p'L. The relationship between the two quantities is obtained in terms of 
the Sagnac time discrepancy AT by combining (45) and (46) as 

(47) tP = Loi' + (E ' /q)AT.  

The adiabatic invariance of the action must now imply the invariance of the flux 
(3 enclosed by the contour, a requirement that is more familiar under the name of 
Lenz's law. Note, however, that since the action is dominated by electromagnetic 
terms, any changes in the system will propagate to other parts of the contour with the 
velocity of light rather than with the velocity of the particle. Hence the characteristic 
period of the motion must be taken as A / c  rather than L/v '  (equation (24)). As a 
result the flux will be invariant for all changes which are slow compared with this, 
even if the charges themselves do not move. 

Setting tP = Loi where i is the current when the gyro is stationary, the change in 
current measured by an observer when the contour is rotated is 

Ai=i ' - i=-(E' /qLo)AT (48) 
where the energy E' must include not only the rest-mass energy of the particle but 
also its kinetic energy and any contribution qV' due to the local electrostatic potential. 
Unless the latter is exceptionally high, however, the energy of the charge carriers in 
a conductor will be dominated by their rest mass? and it is sufficient to substitute 

t An electron has rest-mass energy equivalent to about 0.5 MeV. 
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E’= mcz and use ( 7 )  to rewrite (48 )  as 

Ai  = - (2m/qLo)f i  - S (49)  

(cf DeWitt 1966). 
Hildebrandt (1964) has employed a conductor in the form of a cylinder, rather 

than a ring, to demonstrate a rotation sensor based on this effect. Initially there is no 
current flowing but on rotating the cylinder about its axis a uniform (proper) magnetic 
field is generated, of magnitude 

B = LoAi/S = - ( 2 m / q ) n .  (50) 

Note that although the effect is present in any conducting contour, it is not easily 
observable in practice without using a superconductor, where the current, once set 
up, will not decay. In this case, the current carriers constitute a macroscopic quantum 
state of the form of (30) and any flux @ enclosed by the contour (equation (47 ) )  must 
be an integer multiple of the flux quantum h / q  (cf (32)).  

5.4. The differential ring (transmission-line) gyro 

By placing a second contour so that it is everywhere parallel to, but slightly displaced 
from, the first (figure 2 ) ,  a structure is formed which, as regards the motion of charged 
particles, is no different from a closed, parallel-wire transmission-line. Since, however, 
the mutual inductance between the contours is now MO, say (determined by the 
analogous form of ( 4 2 ) ) ,  the expression for the flux linking each contour must be 
modified. Thus labelling the contours as 1 and 2 ,  equation (47)  may be generalised 
to the pair of equations 

=Lei; +M& +(E’ ,  / q )AT,  Q2=L0i ;  +Moi’,  + ( E ; / q ) A T .  (51) 
If the separate currents i i ,  i ;  are now written in terms of a current il, common to 
both contours and a differential or transmission-line current i ’  then 

i ;  = i l ,  + i f ,  ( 5 2 )  

@=2(L,-MO)i’+ V’AT (53) 

i ;  = il, - i ’  

and the flux difference @ = Q2 - is 

where V ’  = ( E ;  -E‘ ,  ) / q  is the potential difference between the contours. This flux 
passes between the contours and so may be expressed in terms of the characteristic 
inductance per unit (proper) length of the transmission line pL = 2(L0-  Mo)/L ,  

Q = LpLi’ + V’A T (54 )  

F i r e  2. The differential ring-gyroscope. 
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Since both 01, O2 in (51) are adiabatically invariant then so also is O and if, in 
the inertial frame, @ = LpLi then on rotating the gyro an observer detects a change 
in the current of magnitude 

A i = i ’ - i = - V ’ A T / p L L .  ( 5 5 )  

Substituting for AT and using the relationship ~ L E L  = c - ~  where eL is the characteristic 
capacitance per unit (proper) length of the transmission line, ( 5 5 )  becomes 

A i =  - ( 2 V ‘ ~ ~ / L ) f l  S= - ( 2 Q ’ / L ) f l  * S (56) 

where Q ’ =  V ’ E ~  is the stored charge per unit (proper) length of line. 
By using two concentric superconducting cylinders of radius R = 2S/L,  Brady 

(1981) has demonstrated a rotation sensor of this sort. The current generated when 
the device is rotated about its axis is (except for small corrections) directly proportional 
to the potential difference V ’  between the conductors, 

Ai=-f lRV’EL=-f lRQ’ ,  (57) 

and is independent of the charge-to-mass ratio of the current carriers. Once again the 
use of superconducting materials simplifies the experiment but is in no way essential 
to the effect. 

6. The circular ring-gyro and the invariance of action 

The case of a ring gyro that is exactly circular is of particular interest since its symmetry 
demands that the motion of the particles along the contour remains unaffected by any 
rotation about its centre. Consequently, the functions S and S’ must differ only as a 
result of the coordinate transformation between the inertial and rotating frames of 
reference and in fact describe the same motion, i.e. S ( t ,  r )  = S ’ ( x F )  where ( t ,  r )  and 
x p  are the respective coordinates of the same space-time event in the two frames. 
Hence for the circular ring-gyro we expect the action to be not just adiabatically 
invariant but generally invariant under inertial rotations. 

To illustrate this point, we consider the extreme case of a circular contour of radius 
R = 2S/L  and stationary particles of mass m. The period of such particles is infinite 
and hence the adiabatic approximation is violated for all angular accelerations. 
Nevertheless, the change in momentum prediction by (20) ,  

A p =  - ( E / c 2 ) R R  =-mClR, ( 5 8 )  

is in exact agreement with the result expected for an observer who now has a velocity 
f l R  with respect to the particles. 

A similar argument applies to the expression for the current in a circular trans- 
mission-line (equation (57)) where we may regard the stored charges on each contour 
as fixed in the inertial frame. In the case of the circular ring-laser, however (equation 
(38)), the argument must be modified to take account of the invariant proper velocity 
of the photons. Here, therefore, we consider the standing wave produced by two 
counter-travelling beams and note that only in the inertial frame (where the frequencies 
are identical) does such a fringe pattern appear stationary. In the rotating frame the 
standing wave has an apparent velocity -RR, so generating in a detector the interbeam 



1354 P W Forder 

beat-frequency 

v B =  [2Aw/27rl = f L R l d = N f L l r  

where d = A/2 = n-/ k is the distance between neighbouring fringes. 

( 5 9 )  

7. Conclusions 

By considering the adiabatic invariance of the generalised action integral, 

( i = 1 , 2 , 3 ) ,  f I = (dS/dx') dx' = - pi dx' f 
together with the Sagnac time displacement around a rotating contour, 

AT=( l / c* )  ( n ~ r ) - d l = ( 2 / c ~ ) n . S ,  f 
the momentum change A p  for particles in a rotating ring-gyroscope of length L and 
area S can be found in the form 

A I  = 0 =LAP+ EAT 

so relating the energy change AE = -a * J to the particle angular momentum. 
When the particles constitute a macroscopic quantum state (as in the coherent 

photon field of the ring laser) the changes in wavenumber and frequency of the wave 
may be deduced from the adiabatically invariant quantum phase 

Ac$=O=LAk+oAT 

whilst for particles of charge q (as in a conductor or superconductor) the change in 
contour current i can be obtained from the adiabatic invariance of the enclosed magnetic 
flux, 

A@ = 0 =  L,Ai+(E/q)AT,  

where Lo is the inductance of the contour. 
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Appendix. The metric in a rotating frame of reference 

The metric g,,, in a frame of reference rotating with constant angular velocity can be 
determined as follows. Consider first an inertial frame where each point is assigned 
spatial coordinates r = ( x ,  y ,  z )  and is provided with a standard clock showing the 
universal time t for that frame. Observers in the rotating frame can then determine 
their spatial coordinates xi ( i  = 1 ,2 ,3 )  by noting the values ( r ) '  of the coincident point 
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in the inertial frame when the clock at that point reads t = 0 and their temporal 
coordinate xo by recording the reading of the inertial clock coincident with their current 
position (i.e. xo = ct throughout the rotating frame). 

If infinitesimally separated events have coordinates (t, r ) ,  ( f + dt, r + dr)  in the 
inertial frame and xp = (xo, XI), xp  +dx" = (xo+dxo, x '+dx ' )  in the rotating frame 
then 

dxo= c dt  and dx' = (dr) ,  - (a A r ) ,  dt 

where fk is the angular velocity of the rotating frame and an origin is chosen on the 
axis of rotation. Since the interval ds separating these two events must be the same 
in both frames (Landau and Lifshitz 1971), 

ds2 = c2 dt2 - ldrI2 

= ~ ~ ( l - u ~ / c ~ ) d t - 2 ~ d x ~ ( ~ ~ r ) ,  df -x (dx ' )2  

= g, , (d~ ' )~ + 2gO1 dxo dx' + g,, dx' dxk 

I I 

(summed over i, k = 1,2 ,3)  

(mmmed over p, v = 0, 1 ,2 ,3 )  = gpy dxp dx" 

where gpy has the non-zero elements 

go, = 1 - u 2 / c 2 ,  g1, = -1 ( i  = 1,2 ,3) ,  

go, = -( 1/ c )  (.n A r )  I ,  

and u2 = In A r12. Note that since goo must be positive (Landau and Lifshitz 1971) the 
analysis is valid only for values of R and r which produce the inequality U < c. 
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